Responses of the Inner Ear to Infrasound

Alec N. Salt, Ph.D.

Department of Otolaryngology
Washington University School of Medicine
St. Louis, Missouri, USA
Take-Home Messages from this Talk

- The ear is sensitive and responds to low frequency sounds at levels that are not heard.

- Low frequency sounds amplitude modulate cochlear responses to higher frequency sounds. This is a biological amplitude modulation that cannot be detected with a sound level meter.
Human sensitivity to low frequency sounds

Human Audibility Curve

- ISO226: 2003
- Møller and Pederson, 2004

- 18 dB/Octave
Hearing in guinea pigs compared to humans

The guinea pig cochlea is about half the length of the human

Guinea pigs are about 10-20 dB LESS sensitive than humans
Electrical recording from the guinea pig ear (cochlear microphonics)

Recording from scala media of the third turn of guinea pig.

17 mV max
5 mV max

Guinea Pig Hearing

Cochlear Microphonic Response Amplitudes

Human Hearing - Human Hearing
Guinea Pig Hearing - Guinea Pig Hearing
GP Microphonics - GP Microphonics

Sound level (dB SPL)
Frequency (Hz)

Noise Floor

500 Hz
50 Hz
5 Hz
Two types of Hair Cells in the Cochlea

Inner Hair Cells (IHC)
- Responsible for HEARING
- Hairs do NOT contact Tect. Memb.
- *Respond to VELOCITY*

 (velocity decreases 6 dB/oct as frequency is lowered)

Outer Hair Cells (OHC)
- Generate Cochlear Microphonics
- Hairs attached to Tect. Memb.
- *Respond to DISPLACEMENT*

 (displacement constant with frequency for fixed input level)
- DC-coupled output

Based on Cheatham and Dallos, 2001
We hear through our INNER HAIR CELLS. As they are insensitive to infrasound, we don’t hear the infrasound.

OUTER HAIR CELLS generate the cochlear microphonic response. They are stimulated at ~40 dB lower sound levels at low frequencies.
Connections within the brain

Hearing

Infrasound

From Kaltenbach and Godfrey, 2006
Does the absence of a signal on the scope mean that this microphone/ SLM is insensitive to low frequencies?

No - as we are looking at an AC-coupled signal we cannot determine whether the SLM is responding at 1 Hz.
In discussion of how low frequency tones affect OHC transduction:

Contribute to the bias effect. It is also assumed that biasing initially occurs prior to IHC transduction (Pattuzzi et al., 1984b, 1989; Geisler et al., 1990; Russell and Kössl, 1992b; Ruggero et al., 1992; Rhode and Cooper, 1993). This is because IHCs are velocity detectors at low frequencies and are, therefore, less sensitive to the low-frequency biasing tones. Thus, at the lowest effective bias levels, the changes initiated in OHCs, and reflected in the gross CM, influence feedback and ultimately the displacement pattern of the basilar mem-
Low frequencies cause amplitude modulation of responses to higher frequency stimuli

Auditory nerve fiber responses from cat collected by Jeff Lichtenhan, Harvard Medical School

910 Hz probe stimulates the fiber
Low frequencies cause amplitude modulation of responses to higher frequency stimuli

Auditory nerve fiber responses from cat collected by Jeff Lichtenhan, Harvard Medical School

Alone, the 50 Hz tone doesn’t affect the fiber at any level
Low frequencies cause amplitude modulation of responses to higher frequency stimuli

Auditory nerve fiber responses from cat collected by Jeff Lichtenhan, Harvard Medical School

When combined, the 50 Hz tone amplitude modulates the 910 Hz responses

This form of amplitude modulation by sub-audible low frequency sounds is biological in origins and cannot be measured with a sound level meter.
Low frequencies cause amplitude modulation of responses to higher frequency stimuli.

Auditory nerve fiber responses from cat collected by Jeff Lichtenhan, Harvard Medical School.

When combined, the 50 Hz tone amplitude modulates the 910 Hz responses. This form of amplitude modulation by sub-audible low frequency sounds is biological in origins and cannot be measured with a sound level meter.

Can only get this result where IHC are insensitive to the 50 Hz tone while the OHC detect and respond to it by changing their amplification.
Infrasound responses are suppressed by higher frequency stimuli (i.e. sounds that are heard).

Cochlear Microphonic response (generated by outer hair cells) to a 5 Hz stimulus.

5 Hz response is suppressed by a superimposed 500 Hz tone.

Responses and sensitivity to low frequency sounds will depend on the “listening environment”.

Maximum sensitivity to infrasound will occur when ambient sound levels are low.
Conclusions

• The outer hair cells of the ear are DC-coupled to movements of the sensory structure and respond to infrasound stimuli at moderate levels.

• Low frequency stimulation of the outer hair cells may be used in the brain to eliminate infrasound from hearing. It is also linked to attention state and arousal so stimulation could disturb sleep.

• Outer hair cell responses to infrasound are maximal when ambient sound levels are low.

• Low frequency sounds produce a biological amplitude modulation of nerve fiber responses to higher frequency stimuli. This is completely different from the amplitude modulation of sounds detected by a sound level meter.
Acknowledgements

• Dr. Jeff Lichtenhan,
 Lab of Chris Shera and John Guinan
 Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA

• Dr. Jim Kaltenbach
 Department of Neurosciences, Cleveland Clinic, Cleveland, OH

• Jared Hartsock, Ruth Gill
 Research Assistants, Washington University in St Louis.

• Grant Funding
 National Institutes of Health/NIDCD RO1 DC01368
Helicotrema effects

Helicotrema in HUMAN is expected to attenuate frequencies below 100 Hz by 6 dB/octave

Plugging helicotrema in guinea pigs increases sensitivity below 100 Hz by about 6 dB/octave